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The theory of dielectric screening in molten salts is re-examined, using the charge–charge
correlation functions Szz(q). The inverse dielectric function 1/"(q) is newly obtained in terms
of Szz(q). This 1/"(q) is multiplied onto the attractive part of the inter-ionic potential
between cation and anion, in order to obtain the screened attractive potential �þ�

screened attractiveðrÞ.
A simplified but effectively screened repulsive potential is added to �þ�

screened attractiveðrÞ to get the
total screened potential �þ�

screenedðrÞ. By using the computer simulation for molten NaCl, Szz(q),
and 1/"(q) are obtained. The total screened potential �þ�

screenedðrÞ so as to carry on the above
procedure agreed fairly to the potential of mean force defined by the partial pair distribution
function between cation and anion, gþ�(r). A similar calculation was also carried out for
molten RbBr, starting from the observed Szz(q). And results for this system were fairly
acceptable. From these, it is considered that the screened inter-ionic potential at a long distance
between cation and anion in a molten salt is equivalent to the potential of mean force in it.
These facts make it possible to use the potential of mean force obtained experimentally for the
calculation of the deviation from the Nernst–Einstein relation in molten salts.

Keywords: Dielectric screening; Molten salt; Charge–charge correlation functions; Theory

1. Introduction

Some time ago, the dielectric screening property in molten salts was investigated [1]. Its

property is closely related to the charge fluctuation of the constituents. The charge

fluctuation in a molten salt is represented by the charge–charge correlation function

Szz(q) which is easily obtainable from the partial structure factors in its molten salt.
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As a matter of fact, the dielectric screening function "(q) of a monovalent molten salt is

described, in the momentum representation, as follows [1],

1

"ðqÞ
¼ 1� 4�e2�n0

SzzðqÞ

q2

� �
ð1Þ

where �¼ 1/kBT, and n0 is the number density of constituent ions. On the other hand,

partial structure factors in various molten salts have been obtained by a combination of

different methods of diffraction experiments for the same molten salts [2–7].
Several attempts to obtain the dielectric screening functions by using these

experimental structure factors and equation (1) have been carried out [8,9]. The

obtained results indicated, however, a negative sign in the small q region, suggesting

a difficulty in an appropriate explanation. Since then there has been hardly any further

study of experimentally obtainable dielectric function in molten salts.
In this article, we wish to re-examine this theory and seek whether other plausible and

useful dielectric functions in molten salts are obtainable or not.

2. Brief survey for charge–charge structure factors in a molten salt

Let us consider a typical molten salt system A�B� of x�¼ x�¼ 0.5, zþ¼�z�¼ z¼ 1 and

nþ¼ n�¼ n0. The charge–charge structure factors defined by Hansen–McDonald [1] are

useful quantitative representations, and are written as follows,

SzzðqÞ �
h�qz��qzi

N
¼

X
�

X
�

z�z�S��ðqÞ ð2Þ

S��ðqÞ ¼ x���� þ 2n0xvx�

Z 1

0

sinðqrÞ

qr
g��ðrÞ � 1
� �

4�r2dr ð3Þ

Using the partial pair distribution functions g��(r)(�, �¼þ,�), Szz(q) is given by,

SzzðqÞ ¼ 1þ
n0
2

Z 1

0

sinðqrÞ

qr
fgþþðrÞ � 1g þ fg��ðrÞ � 1g � 2ðgþ�ðrÞ � 1g½ �4�r2dr ð4Þ

On the other hand, the concentration–concentration fluctuation in r-space gcc(r) defined

by Bhatia–Thornton representation [10] is written as follows,

gccðrÞ ¼ x2�x
2
� fgþþðrÞ � 1g þ fg��ðrÞ � 1g � 2fgþ�ðrÞ � 1g½ �

¼
1

16
fgþþðrÞ � 1g þ fg��ðrÞ � 1g � 2fgþ�ðrÞ � 1g½ �

ð5Þ

Corresponding to gcc(r), the concentration–concentration structure factor Scc(q) is

defined as follows,

SccðqÞ ¼ x�x� þ 2n0

Z 1

0

sinðqrÞ

qr
gccðrÞ4�r

2dr

¼
1

4
þ 2n0

Z 1

0

sinðqrÞ

qr
gccðrÞ4�r

2dr

ð6Þ
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Inserting (5) into (6) and using (4), we have,

SzzðqÞ ¼ 4SccðqÞ ð7Þ

Using the formulae obtained in this section, the dielectric screening functions in terms
of Szz(q) will be shown in the next section.

3. Dielectric screening function expressed in terms of Szz(q)

In order to derive the dielectric screening function, we will consider the same molten
salt system considered in the preceding section. If a charge e�ext(r) were introduced
from outside into this system at the position r, then there occurs an induced
charge e�ind(r). Therefore, we have the following Poisson equations in electrostatic
unit,

divDðrÞ ¼ 4�e�extðrÞ ð8Þ

divEðrÞ ¼ 4�ef�extðrÞ þ �indðrÞg ð9Þ

where D(r) and E(r) are the electric displacement and the electric field, respectively.
The electric potential �ðrÞ due to this external charge density is given by

EðrÞ ¼ �grad�ðrÞ ð10Þ

Using (9) we have

r2�ðrÞ ¼ �
4�e�extðrÞ

"
ð11Þ

¼ �4�ef�extðrÞ þ �indðrÞg ¼ �4�e�extðrÞ 1þ
�indðrÞ

�extðrÞ

� �
ð12Þ

where " is the dielectric constant, but it may be extended to an r-dependent term written
as "(r). In their text book, Hansen and McDonald [1] took partly "(r)¼ 1 for the
dielectric function in molten salts and obtained the formula expressed as shown in
equation (1). Now we can express each quantity "(r), �ðrÞ, and �ext(r) in this equation as
the following Fourier representations,

"ðrÞ ¼
X
q

"ðqÞeiq�r, �ðrÞ ¼
X
q

�ðqÞeiq�r, �extðrÞ ¼
X
q

�
ext
ðqÞeiq�r

and �indðrÞ ¼
X
q

�
ind

ðqÞeiq�r ð13Þ

Under the assumption that the dielectric function "(q) is isotropic, which means "(q),
and putting some of these into equation (11), we have

q2"ðqÞ�ðqÞ ¼ 4�e�
ext
ðqÞ ð14Þ

where here and elsewhere in this paper we use the convention AðqÞ ¼
fAxðqÞ,AyðqÞ,AzðqÞg. Since e�ind(r) is a charge fluctuation caused by the insertion of
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the external charge e�ext(r), it might be expressed in the following form, by using the

linear charge response function �zz(q),

e�
ind

ðqÞ ¼ �zzðqÞe�ðqÞ ð15Þ

Based on the fluctuation dissipation theorem, �zz(q) is expressed in terms of Szz(q)

as follows,

�zzðqÞ ¼ ��n0SzzðqÞ ð16Þ

A detailed discussion on this equation is described in the Appendix A. Compare

equations (11) and (12), the inverse dielectric function 1/"(q) is expressed as follows,

1

"ðqÞ
¼

FTfdivEðrÞg

FTfdivDðrÞg
¼

q � EðqÞ

q �DðqÞ
¼ 1þ

�
ind

ðqÞ

�
ext
ðqÞ

ð17Þ

where FT means the Fourier component. Putting (14) and (15) into (17), and using (16),

we have

1

"ðqÞ
¼ 1þ

4�e2�zzðqÞ

"ðqÞq2
¼ 1�

4�e2�n0SzzðqÞ

"ðqÞq2
ð18Þ

or

1

"ðqÞ
¼

1

1þ ð	2s=q
2ÞSzzðqÞ

ð19aÞ

where

	2s ¼ 4�e2�n0 ð19bÞ

Equation (19a) results from an isotropic configuration of surrounded ions, which

condition can be satisfied by a symmetric configuration in the short-range region in the

molten salt of almost perfectly ionized ions such as in molten NaCl and CsCl. If the

ions’ configuration deviates extremely from an isotropic one, which can be, for instance,

seen in molten CuI in which the oscillation of gCu–I(r) for the distance r coincides

basically with that of gCu–Cu (r) [6], then the dielectric screening may include some

anisotropic effect and the application of equation (19a) becomes insufficient. A rather

simplified revision for such a case is the insertion of a parameter � into equation (19a)

defined as,

1

"ðqÞ
¼

1

1þ �ð	2s=q
2ÞSzzðqÞ

ð20Þ

The magnitude of � may be in the range of 0< �� 1 and the condition �¼ 1 may

correspond to a symmetric configuration. In the region of higher values of q>10 Å�1,

we have usually Szz(q)’ 1 which may also correspond to the condition �¼ 1, and then

1

"ðqÞ
¼

1

1þ ð	2s=q
2Þ

ð21Þ
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On the other hand, the inverse dielectric function in the long wavelength limit is

already well known by the theory of the classical one component plasma [1,10].

Starting from the continuity equation relating the charge and taking Fourier transforms

under the condition of long wavelengths, the relation between �ind(q) and �ext(q) is

expressed as,

�indðqÞ ¼
��extðqÞ

1þ ðq2=
2s Þ
ð22Þ

where


2s ¼ 4�e2ð2n0Þ
2�T ð23Þ

Here �T being the isothermal compressibility and 2n0¼ nþþ n�. If an external point

charge ze is put at the position r, then we have the well-known Thomas–Fermi type

screening potential by using equation (22), which indicates that the inverse dielectric

function near the long wavelength limit is written as follow,

1

"ðqÞ
¼

1

1þ ð
2s=q
2Þ

ð24Þ

It is interesting that the inverse dielectric function 1/"(q) in its higher-q region and very

lower-q region is expressed by a similar form as shown in equations (21) and (24),

although their screening constants are quite different. In the intermediate region, 1/"(q)
exhibits an oscillating behavior due to the effect of Szz(q), as a logical consequence.

Using (6) and (7), Szz(q) is given by

SzzðqÞ ¼
X
�

X
�

z�z�S��ðqÞ ¼ 1þ 8n0

Z 1

0

sinðqrÞ

qr
gccðrÞ4�r

2 dr ð25Þ

where we take the ionic charges equal to the ionic valences as zþ¼�z�¼ z¼ 1.

Therefore, 1/"(q) is converted to

1

"ðqÞ
¼

1

1þ �ð	2s=q
2Þ 1þ 8n0

R1

0 ðsinðqrÞ=qrÞgccðrÞ4�r2dr
� � ð26Þ

Under the assumption of �¼ 1, equation (19) is useful for deriving the inverse

dielectric function, 1/"(q), from experimental results for the partial structure factors

and also equation (25) is applicable for deriving 1/"(q) by a computer simulation.

It is apparent that equation (24) is equal to zero at q¼ 0. And therefore,

the inverse dielectric function 1/"(q) has the following relation for any positive values

of Szz(q),

0 �
1

"ðqÞ
� 1 ð27Þ

It is, therefore, possible to derive the inverse dielectric function 1/"(q) if Szz(q) or gcc(r)

are known by either the experimental method or computer simulation under the

assumption of �¼ 1. In the following sections, we will show several results for 1/"(q) by
using experimental Szz(q) and simulated gcc(r).
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4. Screening for Coulomb potential in a molten salt

In a molten salt having charges of zþ¼�z�¼ 1, the screened potential between a cation

and an anion at a distance of r, �þ�
screenedðrÞ, may be divided into two parts as follows,

�þ�
screenedðrÞ ¼ �þ�

screened repulsiveðrÞ þ �þ�
screened attractiveðrÞ ð28Þ

Here �þ�
screened repulsiveðrÞ is the repulsive potential influenced by a small amount of screen-

ing effect in the short range distance between cation and anion, and �þ�
screened attractiveðrÞ

is the screened attractive potential in the long range.
A utilization of equation (19a) for the repulsive potential seems not to be a good and

enough approximation as the screening effect, because the application of linear response

theory for a highly nonlinear functional form cannot give any good approximation,

and therefore, equation (16) is a poor approximation for the repulsive potential because

of its highly nonlinear functional form, and therefore, the screening effect for the direct

repulsive potential should be treated in a different way. A simple consideration for the

screening effect for the repulsive potential is the introduction of a parametric multiplier,

hereafter taken as �, which can be multiplied to the well-known formula of the repulsive

potential as multiplicand. Then the screened repulsive potential may be written as

follows,

�þ�
screened repulsiveðrÞ ¼ ��þ�

repulsiveðrÞ ð29Þ

where �þ�
repulsiveðrÞ is the bare repulsive potential. On the other hand, the attractive

screened potential �þ�
screened repulsiveðrÞ is effectively screened by the existence of other ions,

although its bare-potential may be mainly ascribed to the form of Coulomb interacting

potential. Let us put an ion of positive point charge at the origin. Then another ion of

negative point charge in the region of attractive Coulomb potential at r feels the

potential,

�þ�
attractiveðrÞ ¼ �

e2

r
ð30Þ

Therefore, the screened attractive potential in q-space is written as follows,

�þ�
screened attractiveðqÞ ¼ �

4�e2

"ðqÞq2
ð31Þ

The numerical result for �þ�
screened attractiveðrÞ is given by the inverse Fourier transforma-

tion FTf�þ�
screened attractiveðqÞg. The repulsive potential �þ�

repulsiveðrÞ which is often approxi-

mated by either the Born–Mayer type potential or the inverse function of rn(n� 12).

That is,

�þ�
repulsiveðrÞ ¼ A expð�brÞ or �þ�

repulsiveðrÞ ¼
B

rn
ðn � 12Þ ð32Þ

where A, b, B and n are constants. Equation (28) is therefore converted to

�þ�
screenedðrÞ ¼ �A expð�brÞ þ FT �þ�

screened attractiveðqÞ
� �

ð33aÞ
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or

�þ�
screenedðrÞ ¼ �

B

rn
þ FTf�þ�

screened attractiveðqÞg ð33bÞ

In the region of Szz(q)� 1, equation (23) is applicable, and therefore we have

�þ�
screened attractiveðqÞ ¼ �

4�e2

q2
q2

q2 þ 	2s
¼ �

4�e2

q2 þ 	2s
ð34Þ

This equation is easily converted to the r-dependent expression as

�þ�
screened attractiveðrÞ ¼ �

e2

r
expð�	srÞ ð35Þ

The screening parameter 	s is exactly equal to the inverse of the Debye screening length.
Using (32) and (35), the effective potential between cation and anion in the region of
Szz(q)� 1 is then expressed as,

�þ�
screenedðrÞ ¼ �A expð�brÞ �

e2

r
expð�	srÞ ð36aÞ

or

�þ�
screenedðrÞ ¼ �

B

rn
�
e2

r
expð�	srÞ ð36bÞ

It is emphasized that the inverse dielectric function 1/"(q) as a screening effect can be
multiplied onto the bare attractive inter-ionic potential between two ions in the q-space,
and the screening parameter � is also multiplied onto the repulsive potential in r-space,
in order to obtain the effective screened potential.

5. Equivalency between the screened pair potential and the potential of mean force

We have obtained an asymptotic form for the screened attractive potential, as shown in
equation (35). The factor exp(�	sr) is familiar from the elementary Debye–Hückel
theory and the corresponding pair distribution function gþ�(r) is given by,

gþ�ðrÞ ¼ exp
�e2

r
expð�	srÞ

� �
ð37Þ

In this section, we will prove that this asymptotic form of the screened attractive
potential �þ�

screened attractiveðrÞ and the potential of mean force Uþ�(r) defined by the
formula of gþ�(r)¼ exp[�Uþ�(r)/kBT ] are equal to each other at the long distance of r,
by using the Ornstein–Zernike equation. Putting a cation 1 at the origin and an
anion 2 at the position r, and furthermore the third ion 3 at the position of r0, then we
have an approximate Ornstein–Zernike equation as follows,

��Uþ�ðrÞ ¼ ���þ�ðrÞ þ n0

Z
drcþ�ðjr� r0jÞh��ðr

0Þ ð38Þ
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where cþ�(r) is the direct correlation function between cation and anion, and h��(r
0) is

equal to (g��(r
0)� 1). Here we have inferred that the third ion represented by 3 is

mainly another neighboring anion located around the cation at the origin, because the

ion 3 is located at a closer position to the origin, which means that its sign is negative.

By Fourier transform, equation (38) is converted to the following form,

Uþ�ðqÞ ¼ �þ�ðqÞ 1�
cþ�ðqÞh��ðqÞ

�n0�þ�ðqÞ

� �
ð39Þ

On the other hand, it is well known that the direct correlation function cþ�(r) has an

approximate form for large r, as follows,

cþ�ðrÞ ’ ���þ�ðrÞ ð40Þ

The Fourier transform of equation (40) is immediately written as,

cþ�ðqÞ ’ �n0��
þ�ðqÞ ð41Þ

Putting (41) into (39), we have

Uþ�ðqÞ ’ �þ�ðqÞf1þ h��ðqÞg ¼ �þ�ðqÞS��ðqÞ ð42Þ

Apart from a quantitative disagreement with either the experimental result or simulated

one, S��(q) may be analogically expressed as follows, by using the random phase

approximation [10],

S��ðqÞ ¼
1

1þ n0����ðqÞ
ð43Þ

Here the pair potential between anions in its Fourier transform ���ðqÞ is also

approximately expressed as 4�e2/q2, and then we have,

Uþ�ðqÞ ¼ �
4�e2

q2 þ 	2s
ð44Þ

and finally we have,

Uþ�ðrÞ ¼ �
e2

r
expð�	srÞ ð45Þ

Therefore, �þ�
screened attractiveðrÞ described in equation (35) and the potential of mean force

Uþ�(r) are equal to each other at the long distance of r. The expression of �þ�
screenedðrÞ is

certainly not rigorous, and therefore there is inevitably a minor numerical discrepancy

between this and Uþ�(r) in the numerical agreement. However, in an approximate

sense, both functions are equivalent. In fact, the screened potential between the centered

cation 1 and a neighboring anion 2 locating at an appropriate distance, is expressed

in terms of the form of direct interacting potential multiplied by the inverse dielectric

function 1/"(q). The factor 1/"(q) is evidently given by the force acting on the centered

cation from all other neighboring ions represented by 3. Therefore, the screening

potential is physically equivalent to the potential of mean force.
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6. Inverse dielectric function in molten NaCl obtained by computer simulation

It is not necessary to apply the dielectric function for the computer simulation, because

the simulation procedure itself involves automatically the screening behaviors and only

the utilization of appropriate bare inter-ionic potentials is required, although the ion’s

charges are not always equal to their valence ones. In fact, the effective charge z* used

in computer simulation is sometimes smaller than the ion’s valence number because of

a partly covalent character of the constituents. In the cases of MD or Monte-Carlo

simulations, the effective charge in molten CuI is taken to be 0.6 [6]. In this section, we

derive the charge–charge correlation function Szz(q) and the inverse dielectric function

1/"(q) of molten NaCl by using MD simulation. The well-known Tosi–Fumi potentials

are used as the bare inter-ionic potentials. The simulated gþþ(r), g��(r) and gþ�(r)

in the range of r<8Å agreed with the experimental results [2] and indicate a

good isotropic configuration suggesting �¼ 1 and these quantities were inserted into

equation (4). The obtained Szz(q) of molten NaCl is shown in figure 1, which agreed

with that shown in the literature [1]. Putting this Szz(q) into (19a), we have the 1/"(q) in
molten NaCl as shown in figure 2. Using the obtained 1/"(q) and taking �¼ 0.5 as a trial

screening factor for the repulsive potential and (33a), the estimated screened potential

between cation and anion is shown in figure 3. So far the obtained screened potential is,

more or less, close to the mean force Uþ�(r). A difference between �þ�
screenedðrÞ and

Uþ�(r), which are shown in figure 3, may be caused by several reasons. One of them is

that the inverse dielectric function is only applicable for a gradual slope of attractive

potential and the screening for the repulsive part is restricted to a qualitative way as

multiplying the parameter �. This treatment may diminish, more or less, the exactness

of the result. The other reason is that we have used Tosi–Fumi potential for MD

simulation in order to obtain gþ�(r). Even though the obtained gþ�(r) by this

simulation is close to the experimental one in the range of r<8Å, we are not sure of the

0 5 10
0

2

4

q (Å−1)

S
zz

(q
)

Figure 1. Szz(q) of molten NaCl obtained by MD simulation.
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possibility of agreement in the range of distance beyond 8 Å, because the decaying
tendency of gþ�(r) obtained by simulation is slow, indicating a remarkable oscillation
up to r¼ 15 Å. Usually it is hard to obtain any visible oscillation in the experimental
gþ�(r) beyond the distance of r� 10 Å. It is known that a Monte-Carlo simulation by
using the deformation dipole model [11], which makes it possible to have a more rapid
decaying for gþ�(r), gives a better agreement for the experimental results of molten
CsCl [12]. These facts suggest that the second and third peaks of Uþ�(r) obtained from
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Figure 3. Screened inter-ionic potential between Naþ and Cl� ions, �þ�
screenedðrÞ and

Uþ�ðrÞf¼ �kBT ln gþ�ðrÞg of molten NaCl.
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Figure 2. 1/"(q) of molten NaCl.
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simulated gþ�(r) should be diminished to some extent in the range of r>10 Å. At the
present stage, the obtained �þ�

screenedðrÞ is inevitably somewhat numerically different from
Uþ�(r). By inserting the calculated �þ�

screenedðrÞ instead of Uþ�(r), however, the obtained
gþ�(r) is semi-quantitatively close to the simulated one, as shown in figure 4.

7. Inverse dielectric function obtained from experimental Svl(q)

In this section, we will show 1/"(q) of molten RbBr, using the experimental partial
structure factors. The experimental data for S��(q) are adopted from the article of
Saito et al. [7] In figures 5 and 6, the experimentally obtained Szz(q) and the
corresponding 1/"(q) are shown. As seen in these figures, the larger Szz(q) rather than
unity yields a relatively small quantity for 1/"(q). This fact is physically plausible,
because a large charge fluctuation at the position of r around a centered ion located at
the origin indicates a larger distribution of ions of opposite sign at r, which naturally
causes a large screening in comparison with that of an averaged distribution of ions.

Using the available repulsive potential for molten RbBr [7], we have calculated
the screened potential for this molten salt, by putting the appropriate 1/"(q) into
equation (33b). The results are shown in figures 7 and 8 under the condition of �¼ 1. As
seen in figure 7, the screened inter-ionic potential between Rbþ and Br� ions, �þ�

screenedðrÞ
has a deeper minimum in comparison with the potential of mean force, Uþ�(r),
contrasting with the tendency of molten NaCl starting from the partial structure factors
obtained by MD simulation. The most likely reason for this discrepancy seems to be an
experimental uncertainty for the partial structure factors in their small-q regions.
This uncertainty gives, in due course, a numerical error in the inverse dielectric function
1/"(q) in the very small-q region, even though its magnitude is relatively small. On Fourier
transformation, such a small uncertainty gives a remarkably large change in the screened

0 5 10 15
0

2

4

r (Å)

g 
N

a–
C

l(r
) g+ −(r ) (MD)

e−fscreened(r )/kBT+ −

Figure 4. Pair distribution function gþ�(r) and corresponding function of expf��þ�
screenedðrÞ=kBT g of

molten NaCl.
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inter-ionic potential. In fact, an artificial modification for the curve of 1/"(q) in only the

small-q region makes it possible to obtain a result similar to Uþ�(r).

8. Deviation from Nernst–Einstein relation

In this section, we wish to deal with a practical application of the potential of mean

force Uþ�(r) in molten salts. The deviation, �, from the Nernst–Einstein relation in
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Figure 6. 1/"(q) of molten RbBr.
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Figure 5. Experimental Szz(q) of molten RbBr.
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monovalent molten salts, � is defined as follows,

� ¼ �þ þ �� ¼
n0e

2

kBT
ðDþ þD�Þð1��Þ ð46Þ
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6
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g
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r(
r) g+ −(r ) (exp.)

e−fscreened(r )/kBT+ −

Figure 8. Pair distribution function gþ�(r) and corresponding function of expf��þ�
screenedðrÞ=kBTg of

molten RbBr.
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Figure 7. Screened inter-ionic potential between Rbþ and Br� ions, �þ�
screenedðrÞ and

Uþ�ðrÞf¼ �kBT ln gþ�ðrÞg in molten RbBr, and corresponding partial pair distribution functions.
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The partial conductivities for cation and anion, �þ and ��, and the diffusion constants

Dþ and D� were already derived as before [13]. Taking these results, we have

� ¼ 1� ð1��BRÞ
2=�0

ð1=�þÞ þ ð1=��Þ
ð47Þ

where

�0 ¼ n0

Z 1

0

@2�þ�

@r2
þ
2

r

@�þ�

@r

� �
gþ�ðrÞ4�r

2dr ð48Þ

�þ ¼ n0=2

Z 1

0

@2�þþ

@r2
þ
2

r

@�þþ

@r

� �
gþþðrÞ þ 2

@2�þ�

@r2
þ
2

r

@�þ�

@r

� �
gþ�ðrÞ

� �
4�r2 dr ð49Þ

�� ¼ n0=2

Z 1

0

@2���

@r2
þ
2

r

@���

@r

� �
g��ðrÞ þ 2

@2�þ�

@r2
þ
2

r

@�þ�

@r

� �
gþ�ðrÞ

� �
4�r2 dr ð50Þ

and

�BR ¼
4�n0
3kBT

Z 1

d

@�þ�ðrÞ

@r
gþ�ðrÞr

3dr ð51Þ

where �ijðrÞ is an effective inter-ionic potential between ions i and j. gij (r) is the partial

pair distribution function between ions i and j as defined in the preceding section. In this

equation, we can approximate that d is equal to the hard-core contact distance between

cation and anion, if both ionic sizes are rigid. However, its assumption may not be

always valid, on going to heavier atomic weight. Here, we will use the first maximum

position of gþ�(r) as the distance of ionic contact. The quantity �BR is essentially

caused by an asymmetric distribution of the surrounded ions around the centered ion

under an applied external field; it was obtained by Berne and Rice [14], and recently

certified by the present authors in a different way [13]. Since it was found that values of

�0, �þ and �� are numerically close to one another, we can take ���BR as the

deviation from the Nernst–Einstein relation in a molten salt. The effective potential

�þ�ðrÞ shown in (51) is equal to the potential of mean force acting on the ion at the

origin from another ion of opposite sign located at the distance r, and therefore, it is

possible to use the potential of mean force Uþ�(r) instead of �þ�ðrÞ. Therefore,

equation (51) is converted to,

�BR ¼
4�n0
3kBT

Z 1

d

@Uþ�ðrÞ

@r
gþ�ðrÞr

3dr ¼ �
4�n0
3

Z 1

d

@gþ�ðrÞ

@r
r3dr ð52Þ

We can basically calculate the deviation �BR from the Nernst–Einstein relation,

by using (52), if the partial pair distribution function is experimentally obtained.

However, because of the presence of the r3 term in the integrand, convergence at

large r is slow and full information on the approach of gþ�(r) to unity is necessary.

At the present stage, gþ�(r)’s in molten salts being satisfactory this requirement seem

to be rare.
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9. Conclusion

In this article, we have newly revised a theory of dielectric function in molten salts.
It is concluded that the screened inter-ionic potential between Naþ and Cl� ions
in molten NaCl, carried out in the present procedure, seems to be equivalent to the
so-called potential of mean force. Also the experimentally obtained screened potential
in molten RbBr agrees semi-quantitatively with the potential of mean force obtained
from gþ�(r), within the order of magnitude.
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Appendix A: an inductive derivation of equation (16)

Consider a simple liquid of density �. The variation of single particle density ��(1)(r1) at
the position r1 caused by an external field ��ðr1Þ and by surrounding particle 2 located
at r2 is expressed in Yvon equation from [1],

��ð1Þðr1Þ ¼ �����ðr1Þ � ��2
Z

hðr1, r2Þ��ðr1Þ dr2 ðA1Þ

where h(r1, r2) is the pair correlation function defined by h(r1, r2)� {g(r1, r2)� 1}.
Taking the Fourier transformation for (A1), we have

��ð1ÞðqÞ ¼ �����ðqÞ � ��2hðqÞ��ðqÞ

¼ �½1þ �hðqÞ�����ðqÞ ðA2Þ
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The corresponding Yvon equation for pair correlation function is expressed as,

�hðr0, r1Þ ¼ ����ðr0, r1Þ � ��2
Z

hðr1, r2Þ�ðr0, r2Þ dr2 ðA3Þ

where �ðri, rjÞ means the interacting potential between the particles i and j. By Fourier

transformation, equation (A3) is converted to the following form,

��ð1Þ ¼ �hðqÞ ¼ �½1þ �hðqÞ����ðqÞ ðA4Þ

It is emphasized that the function [1þ �h(q)] oscillates around unity as a function of q.

Let us now consider the molten salt discussed in the present article. If we put a cation at

the position r0 and put anions at r1 and r2, then the above function [1þ �h(q)] is

converted to Szz(q) which also oscillates around unity corresponding to the function

[1þ �h(q)]q, and in addition, � is also converted to n0 because the FT component of

charge fluctuation is equal to n0hþ�(q). Therefore, we have

n0hþ�ðqÞ ¼ �SzzðqÞ�n0�
þ�ðqÞ ¼ �zzðqÞ�

þ�ðqÞ ðA5Þ

where

�zzðqÞ ¼ ��n0SzzðqÞ ðA6Þ

196 T. Koishi et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
3
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1


